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A differential geometric analysis has been made of the various tensor quantities associated with a grain 
boundary. It is shown how these tensor quantities can be developed so as to give a unique and generalized 
formulation for the description of the dislocation content of such boundaries. 
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Introduction 

In an earlier study (Marcinkowski & Sadananda, 1975), 
it was shown that the continuum theory of grain 
boundaries was compatible with the coincidence- 
site-lattice model. This formulation, however, was 
somewhat limited mathematically. It is therefore the 
purpose of the present analysis to formulate the 
continuum theory of grain boundaries in terms of the 
more general concepts of differential geometry. Kr6ner 
(1958), Bilby (1960) as well as Kondo (1955) have 
shown that the utilization of the highly developed 
methods of differential geometry are well suited to the 
treatment of lattice defects. 

Distortion tensor associated with a grain boundary 

Consider the formation of the symmetric tilt boundary 
shown in Fig. 1. In particular, the boundary may be 
viewed as being constructed by going through a series 
of well-defined stages or states (Kr6ner, 1958; Kondo, 
1955; de Wit, 1968). The initial state, which will be 
denoted by capital Latin letters such as K, L, M, etc., 
may be viewed as an ideal perfect crystal as shown in 
Fig. l(a). The crystal may then be cut along the vertical 
dashed line into two regions labeled as # 1 and # 2  
followed by rigid rotations to give the results shown in 
Fig. l(b). This may be referred to as the torn state and 
will be designated by lower-case Latin letters k, l, m, 
etc. The grain boundary, or final state, shown in Fig. 
l(c) may be formed from the torn state by the addition 
of wedges of extra matter to the latter state. An alter- 
native method of formation would involve simple 
shears of opposite sign within each grain. The final 
state will be designated by Greek letters such as ~, 2, ~, 
etc. In a similar manner to that shown in Fig. 1, an 
asymmetric grain boundary may be created by the 
process shown in Fig. 2. A set of base vectors er, ek and 
eK may also be associated with each of the various 
grains. 

The components of length dx K and dx k associated 
with the (K) and (k) states respectively may be related 
to one another as follows (Kr6ner, 1959): 

AC 33A- 1" 

dx k = Ak dx r (1 a) 
and 

d x r = A ~ d x  k (lb) 

etc., where the quantities A k and Ak r are termed the 
distortions. The distortion tensor connecting the (K) 
and (k) states of Fig. 1 may be written as 
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Fig. 1. Steps illustrating the formation of a symmetric tilt boundary: 
(a) initial reference state, (b) torn state, (c) dislocated state. 
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where A~: and 2A~ are simply the distortions within 
1 

grains # 1 and # 2 respectively. Since the coordinates 
are simply dragged by the rigid rotations (Schouten, 
1954), i.e. 

dxk = 6}dx K, (3) 

where 6~ is the Kronecker delta, it follows that 
A~= k k A~=6K. (4) 

The quantities H( - x '  ) and H( + XK') in (2) are Heavi- 

side functions defined by (KrSner, 1958; de Wit, 
1973) 

0 if x '  > 0  
H ( _ x  1) = K (5a) 

1 if x' < 0  
and K 

t 
'0 if X' < 0  

H ( + x 1 ) _ _  K (5b) 
.1 if x 1 > 0  

K 
where the x ~ are measured with respect to a set of local 

K 
coordinates in the (K) state of the potential boundary 
in Fig. l(a). Thus, at the boundary, x 1 =0,  while within 

K 
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grain # 1 it is negative, and positive within grain # 2. 
Also important in (2) is that the quantities associated 
with grains #1 and # 2  are separated by curly 
brackets. This is to emphasize that each of the two 
grains may be treated separately. The significance of 
this separation will become more clear as the present 
analysis is developed further in the following sections. 

For the final state of the symmetric tilt boundary 
shown in Fig. l(c) we may again write, similar to (2) 

where 

while 

A~= { 1A~H(-xl)}, + { 2A~H( + XK')} 2 (6) 

(lO ) 
A} = tan 0/2 1 (7a) 
' 0 0 

_ 1 0 0 )  
2A~< = tan 0/2 1 0 

0 0 1 
(7b) 

where the last two distortions correspond to simple 
plastic shears which allow the gap in the (k) state to be 
filled up. 

The asymmetric distortion giving rise to Fig. 2(b) 
can be written as 

A~',={A~',H(-xl)}I+{A~',H(+xl)}2 (8) 

where 
A~:', = A~', = 6~:',. (9) 

With respect to the (1<') state distortion of Fig. 2(c), we 
may write 

A~"={A~"H(-x~)}I+{A~"H(+x')}2K, ~, (lO) 

where 
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Fig. 2. Steps illustrating the formation of an asymmetric tilt boundary" 
(a) initial state, (b) torn state, (c) dislocated state. 

The A 2 component in the last relation accounts for the 
plastic distortion which increases the length along the 
x 2 direction of grain # 2 in Fig. 2(c). 

Burgers circuit associated with a grain boundary 

Fig. l(a) shows a Burgers circuit 1-2-3--4-5-6-1 taken 
about a closed path in a counterclockwise direction. 
The corresponding circuit associated with the torn 
state is shown in Fig. l(b). It is apparent that the latter 
Burgers circuit possesses closure failures associated 
with the pair of newly created surfaces given by the 
lengths 4'-1 and 1-4 which are shown by dotted 
arrows. The corresponding closure failures for the (~c) 
state are shown by the vectors 4'-7 and 7-4. 

Fig. 3 shows a more detailed description of the 
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symmetric grain boundary illustrated in Fig. 1(c) 
(Marcinkowski & Sandananda, 1975). The boundary 
is shown by the vertical dotted line, while the open 
circles are coincidence sites common to both grains. 
The edge-type dislocations associated with the 
boundary are represented in heavy outline by their 
standard symbols. In addition, a Burgers circuit, 
identical to that shown in Fig. l(c) is also drawn. 
Similarly, Fig. 4 shows the dislocation content and 
Burgers circuit associated with the asymmetric grain 
boundary illustrated in Fig. 2(c), but redrawn so as to 
encompass an integral number of lattice sites. 

We are now in a position to examine the mathemat- 
ical significance of the Burgers circuits discussed above. 

/ i x / ? x 4 ~  t 
0/2 / I x  X ~ / 4. 0/2 

,,/ix \ / i x  i ~ / "~..~ 
_ _ i x / \  /~ \ ~O:.r'l --I ~ 

__ix" \ ~.ix \"'..~" ! ""4.. / "4__ I "4~ 
Ix" k /ix--\--ix'" X : I "~4, / "4~. I--4 
\ ~..ix A - - i x "  \ - - i x i 4 - -  / - ~ .  / 4 _  / 

~ -  \ . 5 ~ . "  \ _~I-  M/ " 4 - -  / ~ 4 . . ~  / ~ ' 4  
Ix~ ~ Ix / \ ;0". - ~" " 4  

~, X _ W -  X / i x : 4 , ,  / : 4 ~ 1  '.4 

I~. \ ~ l .~ ,  \ : l ,-,i, l .",,I 
\ / ~  6 \ _ _ ~ _ : 4 ~  /z "4 -  / 

. ,  X 7 ¥ .  / - '.. / 
IX \ - - ~  i 4 ~  { "q 
k / ~ "  \ :  / - - 4 ~  / 

~. \ / ~ i 4 . ~  I 4 . . t -  ± ,  \ / ~  ~ " . ~ /  . 2 z 

\./X ii 7"4 %.,  
I \ IX/ i l l ' I r lh4 ~ /  

~>?:--d 

Fig. 3. Dislocation content and Burgers circuit associated with the 
53-1:' symmetric tilt boundary shown in Fig. l(c). 
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Fig. 4. Dislocation content and Burgers circuit associated with the 
26-55 asymmetric tilt boundary shown in Fig. 2(c). 

In particular, the Burgers vector of the (~c) state may be 
expressed by the following line integral: 

t ~  

= - + A ~ d x  x (12) b ~ 
I #  

where the above integral must be taken about a circuit 
in the (K) state as shown in Fig. l(a). Applying the 
above integral to Fig. l(c), in conjunction with (6) gives 

bl  = { - A1A-x2} 1 nt- { - A~2Ax~}2 K _ (13o) 

where A x  2 etc. are simply the distances from 5 to 6, 
5 - 6  

etc. in Fig. l(a). Equation (13a)can be rewritten as 

b ~ = { 4 t a n O / Z } t + { 4 t a n O / 2 } 2 ,  (13b) 
K 

or in terms of Fig. l(c) 

b' = {AxlT}' + {Axl}2" ~ _ (13c) 

Procedures similar to that used for the (x) state can 
also be applied to the (k) state of Fig. l(b). However, 
we must first modify (12) to read 

= ~Akdx K , (14) b k 

which with the aid of (2) gives 

b2=k {A2 5A-x2} 1 + {A2~ 2A-x~}2 (15a) 

o r  

b 2 = { - 4 } 1  +{4}2. (15b) 
k 

In terms of Fig. l(b), the above equation becomes 

b2= {Axe}' + {Ax,~ }2" k ,_ (15c) 

The closure failure b 1 may be thought of as due to 
K 

internal dislocations such as those depicted in Fig. 3, 
while b 2 measures the amount of new surface created 

k 

by the tearing operation. We shall have more to say 
about these very important concepts later. 

It is now a simple matter to extend the previous 
analysis to the asymmetric boundary of Fig. 2(c) or 
Fig. 4. Let us begin by rewriting (12) as 

= - ~ A ~ ' , d x  r'  , (16) 

which together with the distortions of (10) gives 

b2={-A25Ax2}1+{-2A222A_x2} 2 , , ,  _ (17a) 

and 
. ,b '={-AIA-x2}'+{O}z'  (17b) 

which in terms of Fig. 4 can be written more explicitly 
as  

b 2 = { 1 0 } l  + { K  l cos0/210 } = _ { 1 }  2 2  (18a) 

and 
b ' =  {10 tan 0/2}, + {0}2 (lSb) 
K 1 
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or alternatively as 
b 2 ~' = { A x _ ~ } I + { A x 2 ~ 2 = { A x 2 ~  2 (19a) 

3 ' - 2 "  3 ' - 3  ~ 
and 

b' = {Ax'v}, + {0}2. (19b) 
KI , -  

T h e  torn (k ~) state of Fig. 2(b), similar to that of the 
(k) state gives rise to the following closure failure: 

b k' = ~ A k ' , d x  k' , (20) 

which when used with (8) yields 

b2= {-4}a +{4}2, (21) k 1 
i.e. the same result as that given by (15) for the (k) 
state. It should also be noted at this point that in the 
construction of Fig. 2(c), the distance 1-7 is less than 
unity. This does not alter the validity of the above 
equations; however, the drawback in this case is that 
the Burgers vector does not involve an integral number 
of interatomic jumps, and is thus somewhat incon- 
venient to construct. In simple physical terms then, we 
note that the net Burgers vector associated with a grain 
boundary, expressed in terms of crystal-lattice disloca- 
tions, is nothing more than the extra number of inter- 
atomic jumps between equivalent directions in the two 
adjacent grains, i.e. 4'-7-4 in the case of Fig. 3, and 
4'-7 and 3'-3 in Fig. 4 (Marcinkowski & Sadananda, 
1975). 

The line integral of (12) can be converted into a 
surface integral by means of Stokes's theorem as 
follows (Schouten, 1951): 

b ~= - ~ A ~ d x  r =  -fsO~LA~K1dF LK (22) 

w.er  

In the case of Fig. l(c), (22) gives 

b'={-fsc3,AadF'Z} +{-~C~lA~dFl2}2 (24a) 

since d F 1 2 = - d F Z l = d x l d x 2 .  With the distortions 
given by (6), (24a) becomes 

b 1= tan 0/2 6 1)dxl d 2 
K --OC~ 1 

+{ tan  o/2f]26(xl)dxlfdx2}2 , (24b) 

where use has been made of the following relations 
(de Wit, 1973): 

c~H( -  x l )=  - 6(x') (25a) 

and 
~ H (  + x l )=  + 6(xl), (25b) 

where 6(x 1) is the Dirac delta function defined such 

that it is zero everywhere for x 1 # 0 and which also has 
K 

the following property: 

f + ~  1 1 6(x )dx = 1. (26) 
--O0 

,)/dx 2 is simply equal to A x  2 - - 4  f rom Fig. l(a), Since 
2-3  

24(b) reduces to 

b~={4tanO/Z}~+{4tanO/2}2 (27) 
K 

which is identical to that given by (13b). Equation (22a) 
can also be used in conjunction with the asymmetric 
tilt boundary of Fig. 4 and again gives results identical 
to those obtained by the use of (16). It is also possible 
to utilize an expression of the type given by (22a) for 
the (k) state. In particular 

bk=~Akdxr=fftLAk]dFLr. (28) 

This expression for the torn (k) and (k x) states is 
identical to those given by (15) and (21) respectively. 

Still a third way of expressing b" is by rewriting (23b) 
as 

bK 1 - 1  L K K r A# =- ~A:~Au[~LAK--OKAL]dF , (29a) 

or in more concise form as 

= - / S , ~ d F ~ "  (29b) b ~ 
d s  

where 
A~A~ =6,~ (30) 

while the quantity S,~,~ ~ is referred to as the torsion 
tensor (Schouten, 1954, 1951) given by 

S ~ . ~  1 L K = ~AaA u [C~LAr - QKA[] (31) 

where it is apparent that S,~ ~ is antisymmetric in the 
indices 2 and ~. For the (~c) state of the symmetric 
boundary in Fig. 3, (31) gives for the specific com- 
ponent S i 21 

K 

1 1 S;:,I=~[A1A2... . _ .  2 1 1 - A I A 2 ] O l A 2 .  (32a) 
K 

With the aid of (6) the above relation becomes 

Si21=K {-½ tan 0/2 6(x')},, + {-½ tan 0/2 6(x')}2. (32b) 

When the above expression is substituted into (29b), 
we again obtain a result identical to that given by (27); 
thus establishing the self-consistency of the present 
formulation. 

With respect to the asymmetric tilt boundary of 
Fig. 4, we may write, similar to (29b), 

t ~  

= - / S ~ , , , ~ l d F  ~'"~ (33) 
ds 
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where it is easy to show that 
f ~ (34a) S i ~ ' =  {-½ tan 0/2 6(x~)} 1 + t0j.2 

K 1 

and 
Si~2 {__1 1) X~ = :~6(x ),~ + {½3( )}2, (34b) 
KI K 

which when substituted into (33) leads to the same 
results as that given by (18). In the case of the torn (k) 
and (k ~) states, (28) can be rewritten as 

= t ~ i g ,  kdFl" (35a) b k 
d s  

and 
t ~  

= I~t; , / , ,k 'dFt '"  (35b) b k' 
t d ~  

where the quantity f~i;, k is termed the anholonomic 
object and may be written as (Schouten, 1954; 
Zorawski, 1967), 

1 L M ~ k ~']~im k 7A, Am[C'LAM--?MA[] (36) 

with a similar expression for f~;,,;,k'. With the distor- 
tions associated with the affected coordinates, these 
can be evaluated to give 

O i l 2  { 1" 1 
k = -:~6(x k )}t +{½6(xt)}2 (37) 

with an analogous expression existing for k~i 22. When 

substituted into (35), (37) gives the same results as 
those obtained from (15) and (21). We can conclude 
at this point that the torsion tensor S).~ ~ may be viewed 
as a measure of the internal dislocation content within 
a crystal, while the anholonomic object fli,;, k may be 
considered as a measure of the newly created free 
surface induced by the tearing process. There is, how- 
ever, a close relation between the two quantities as we 
shall next see. 

The (~) state in Fig. l(c) can be torn along the 
boundary (Kondo, 1962) which leads to the (~c r) state 
shown in Fig. 5. The newly created free surfaces can be 
resolved into horizontal and vertical components. 
In this case we may write 

b,, T = -q~A~rdx  K (38a) 
, 3  

and 

b ~'T =~A~Tdx K (38b) 

where Af t  = A~. In terms of surface integrals, the above 
equations become 

b KT = -- ~ S  fTu'T KTd P-;~TuT 
ds 

and 

s K T  - T  T bKT= ~ r u r  " dF" " . 

In terms of Fig. 5, the first representation gives 

b ] ¢A~1~ KT 

(39a) 

(39b) 

(40a) 

while the second yields 
b 1 ~T = { Axe,}, + { A._r~,} 2 (40b) 

It is apparent that the dislocation contribution to the 
Burgers circuit given by (40a) is just balanced by the 
free-surface contribution given by (40b). This also 
means that 

S / r ' r  ~r = (41) ~-~2"Tu'T KT 

so that we may write 

''j ( . . K T 
= - J s ( S z r ,  r - ~ / r  "rKrMF ~ r u r "  = 0 .  (42) b ~ 

We thus see the close relation between the torsion 
tensor and the anholonomic object, and it is in fact 
this close relation which has enabled Zorawski (1967) 
to formulate his treatment of dislocations almost 
exclusively in terms of the latter quantity. The (K ~) 
state of Fig. 2(c) can also be torn to generate a (x ~r) 
state corresponding to that of (xr). 

Interpretat ion  o f  the various  tensor  quant i f i e s  
a s soc ia ted  with a grain boundary  

It has been shown that the torsion tensor given by (31) 
is a measure of the dislocation density (Krtiner, 1958). 
This is most simply seen by writing (29b) in differential 
form as follows: 

db K = - S~I~.KdF "'~ = - SiA"F,v":MF~ = a~dF~ (43) 

where a ~ is defined as the dislocation density given by 

a ~ = - ~ ; ~ " ~ S j  (44) 

and where ~:~"~" is the permutation tensor defined by 

~;"~ = C"~/]/g (45) 

while e ""'~ are permutation symbols and g is the deter- 
minant of the metric tensor g~,~. For the symmetric 
tilt boundary of Fig. 3, the only non-vanishing com- 
ponent associated with (44) may be written as 

~31= {tan 0/2 6(x~)}1 + {tan 0/2 6(xl)}2 (46a) 

where (32b) has been utilized. In terms of Fig. l(c), 
(46a) can be written as 

# 1  

5 4' 7' 7 4 3 
. . . . . . . . . .  ~ b" "" .D ~ 

i ' r  

i • be 2 

. . . . . . . .  , )  ~ . . . . . . . . .  , 

_e I 6 t '  8' 8 I 2 e_~ 

( K T ) STATE 

Fig. 5. Torn dislocated state of Fig. l(c). 

i 

#2 
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lAX1 (46b) 
~31= / ~  1 4 ' - 7  + / ~ : ~ 2 /  

Note also in the symbol a ~, that v refers to the direction 
of the dislocation line, and K to the component of the 
Burgers vector. In the case of the dislocation density 
associated with the asymmetric boundary of Fig. 4, 
we have two components, which from (44) and (34). 
are given by 

~3~= {tan 0/2 6(x~)} ~ + {0}2 K 1 
and 

0~ 32 

since g = 1/cos (0/2)= 10/11. In terms of Fig. 4 

[Ax~] 
0~31= 4'-7 +{0} 2 

and 

1 2 2 

(47a) 

(47b) 

(48a) 

(48b) 

In the case of the torn states we can write, similar to (44) 

(~nk = F nml~'~ miK (49) 

which for Fig. l(b) gives 

~32 = {--(~(X1)} 1 + {(~(X')} 2 (50a) 
k 

where (37) has been used. In terms of Fig. l(b) 

dx 2 [Ax 2 
0{32k = ~4'-  1 + [ h.~.~l -4 , (50b) 

11-4 2 
with similar results holding for the (k ~) state. For the 
(K T) state of Fig. 5, it is easy to see that 

a ~r~r . (51) __Or vTrT  
S f2 

The expression given by (29b) is not the most 
generalized description for the closure failure associ- 
ated with a given Burgers circuit. According to Kr6ner 
(1958), Kondo (1955), Schouten (1951, 1954), a more 
general equation is given by 

dF b ~= - S.a +~R.,I~ C ] (52) 

where R;,~; ~ is the Riemann-Christoffel curvature 
tensor given by 

P (53a) R~i~ ~ = 2~3tuF,~ > + 2Ft.lolF,q~ 

or equivalently as 
. . . K  r K K p r p R..~. = 8.Fa,,- 8zFu,. + F . o F ~ . -  F;wl-'u.. (53b) 

where F ~  are referred to as the coefficients of connec- 
tion expressed by 

F~,~= {~} + T~i ~, (54) 

where {~;.} are Christoffel symbols of the second kind 
defined by 

while 

where 

while 

{~a} = ~g~'(8.ga~ + 8ag .~-  8.g.a) (55) 

T;,~ ~ =S;,~ ~ - S~.~ + S~.,a (56) 

S~.. = g..g~PS~ ~ (57a) 

S~.,,~ = gz~g"oSb~ ~. (57b) 

For the symmetric grain boundary of Fig. 3, (55) 
gives 

{ 112}K = {½gl 2~1922} 1+ {½g12~lg22}2, (58) 

which, since g22 is constant, gives 

,2,~={0}, +{0}2. (59) 

Since {~a} is symmetric in p and 2, the same result 
holds for {211}~. Next, with the aid of (56) and (57), we 
obtain 

Ti~ 1 =Si~  1 -S~i  I + 0 = 2 S i ~  1 (60a) 
and 

T i i  ~ =Sz i  1 - 0 + S i ~  1 =0 .  (60b) 
Thus, from (54) 

f l = } i t  r12={r12},+~r,2}2 {2si2'  {2si~1}2 (61a) 
K 

while 
(61b) 

K 

Now for b ~ given by (52), the only possible components 
K 

of Ra)A ~ are R i:~' ,  R~ii ~, Ri~i ~ and R~i i a. From (53b) 
it is a simple matter to show that they all vanish. This 
result has a number of important implications. In 
the first place, it shows that (52) for grain boundaries 
reduces to the simple expression for the Burgers vector 
given by (29b). Secondly, it shows that the space 
associated with Fig. 3 is one of absolute parallelism, 
i.e. where parallel displaced vectors are independent 
of path (Kunin, 1965). More specifically stated, this 
means that the only sources of distortion are disloca- 
tions. 

An analysis similar to that given above can next be 
carried out for the antisymmetric boundary shown in 
Fig. 4. In particular, we obtain 

and 

while 

and 

F1 = {2Sii '} 2 , + { 0 } 2  (62a) 

F 22 = {2Si12}, + {2Sii2}2 (63a) 

F 2, = {0}1 + {0}2. (63b) 

Having determined the coefficients of connection 
for both the symmetric and asymmetric grain bound- 
aries, it is next possible to express the Burgers vectors 

F2 ~ = {0}2 (62b) 1 {0}1 + 
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of these boundaries in still a fourth way by use of the 
concept of parallel displacement of a vector c a 
through a distance d x  u. According to KfiSner (1959) 
and Schouten (1954) the resulting vector difference 
de" occasioned by such a displacement is given by 

dc ~ = - F~,~c~dx ", (64) 

which is seen to be equivalent to (29b) when it is 
realized that c a = j'dx x. For  the symmetric tilt boundary, 
the above equation gives 

dc 1 = - F l 2 c 2 d x  1 , (65a) 
K 

which from (69a) and (37b) gives 

A c l = { 4 t a n O / 2 } l + { 4 t a n O / 2 } 2  (65b) 
K 

where c 2 has been taken as 4. Again, this is simply the 
identical result given by (27). In physical terms, (64) 
shows the manner in which the vector c 2 = A x  ~ changes 

r 6 - 5  

at the boundary as it is displaced by parallel transport 
in the deformed space along the direction A x  I - A x  1 . 

r 6 - 1 - 2  

Equation (64) can also be used to obtain a set of equa- 
tions for the asymmetric tilt boundary of Fig. 4 as well 
as for the torn (k) and (k 1) states. 

Uniqueness of the Burgers circuit associated 
with a grain boundary 

We next turn our attention to some important  ques- 
tions concerning the uniqueness of the dislocation 
content associated with the grain boundaries dis- 
cussed thus far. In particular, Fig. 6 shows a symmetric 
tilt boundary in which the atom arrangement at the 
boundary is identical to that given in Fig. 3. The dis- 
tortions associated with both grains, as well as the 
dislocation content of the boundary however, are seen 
to be completely different in both cases. In particular, 
we must now alter (7) as follows: 

A factor of 2 now appears in the above equation rather 
than 4, as was the case for (13b), because the reference 
lattice in the (K) state is now halved in length. In 
terms of Fig. 6, (67b) may be written as 

b 1 ~-~-- { 7Ayll,} 1 --~ {Ay~ } 2 . (67c) 

For the torsion tensor associated with Fig. 6, on the 
other hand, (32a) gives 

S i i l = { _ ½ cot 0/2 6(x 1)}1 + { - ½ cot 0/2 6(x 1)} 2. (68) 
K K K 

The above equation, used together with (44) yields 

~31= {cot 0/2 6(xl)}1 + {cot 0/2 6(x~)}2, (69a) 

which in terms of Fig. 6 is simply 

A_x', /A_x; (69b) 

1 / 4 - I  2 

I i ' ~ .  / \  

\ / "i', \ . / ~  \ 
\ i ~, \ / " l  

. \ f ' ~ ,  5 \ . ,  

\ . . . ' i ,  \ . ,  
\ 

y . .  J ~..~ / 
/ v / y ~  / 

, .  ? /  
YA.. / r ~ /  

! Y x /  

\ ; g , '  7 \  
( '~- 0) /2 ~, "~' : "~, ,~ ( ~ - 0 ) / 2  

I ;+f k 
Fig. 6. Alternative description of the symmetric  tilt boundary  shown 

in Fig. 3. 

A~ = tan 1 c 1 
0 0 

while (66a) 

. ° i) { i 01 °<), 0 . 

2AK an 1 = ot 1 

0 0 1 

(66b) 
With the use of (12), it is easy to show that 

bt = { - A J A x 2 } ,  + {-A~Ax2}2 (67a) 

which upon substitution of (66) gives 

b l = { - Z c o t O / 2 } t + { - Z c o t O / 2 } 2 .  (67b) 
K 

: _/  7-- .  / , v ~  : v_ / ' ~ _ /  ,~, 

of, . 1 ~ "  : ,~%,. I , '~. I 
< ' . ' _ 1  ~, \.  : ~ Y,,.. iz 

\ ~ . ~ !  \a',,t~'" : "z.L. L ~" 
~ - - \ J ~ ' " "  \ i / . v - - /  
\ ~' , t~" \ __u : ,vA. g -Y 
~" \ j l ~ "  ~1  y . .  I #2 

• _i~ \ ! / v 

.. \;,>?',.v 

Fig. 7. Second alternative description of the symmetric tilt boundary  
shown in Fig. 3. 
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There are still two more alternative descriptions of 
the grain boundary shown in Fig. 3, one of which is 
shown in Fig. 7. In this particular circuit, grain #1 
has the distortion associated with the boundary of 
Fig. 3, while grain # 2  has the distortion associated 
with the boundary in Fig. 6. This boundary thus has 
associated with it still a third dislocation content in 
spite of the fact that the atom arrangements remain 
identical to those of Figs. 3 and 6. In particular, 

while 

b l =  {~x_14} , + {Ax' }2, 
K 1-7 

b2 = {sd_x2, }1+ {0}2" 

(70a) 

(70b) 

Also important to note is that the closure failure 
component 5-5' in Fig. 7 plays the same role as the 
component 3'-3 of the asymmetric boundary of Fig. 4. 
The above results are quite general and apply to low 
as well as high-angle boundaries. Also important to 
note is that the quantity tan (0/2) appears in many of 
the previous equations. This is not surprising in that 
it forms the basis for the coincidence-site-lattice 
description of grain boundaries (Marcinkowski & 
Sadananda, 1975; Marcinkowski, Sadananda & Tseng, 
1973). 

The present results at first appear quite surprising 
in that they show a different grain-boundary-disloca- 
tion content in spite of the fact that the atom arrange- 
ments within the boundary are identical. The above 
arguments would also seem to violate the principle 
that a dislocation is a state property and should be 
independent of the method of formation. However, the 
present theory may be thought of as global in nature 
in that it does not look at the individual nature of a 
dislocation in the grain boundary. Instead, it describes 
what type of wedges, or equivalently, simple shears 
must be imparted to each grain of the (K) state to 
generate the final state. This description is, of course, 
totally contained within the respective distortion 
tensors. The dislocation content in turn is described 
in terms of the number of extra half planes which 
comprise the extra wedge of material. In a sense, the 
present theory is a treatment of these extra half planes, 
and thus a more generalized theory than that required 
for grain boundaries above. This can be seen by ref- 
erence to (46a) which shows that even for 0 = rt/2, there 
is a dislocation density associated with such a 
boundary. Strictly speaking, however, this cannot be a 
grain boundary. However, from the point of view of the 
present theory, this result says that the final state is 
arrived at from the initial state by the insertion of a 
pair of 45 ° wedges into the (K) state. A more 
generalized theory to indicate when these 'perfect' 
boundaries occur would require the incorporation of 
the crystal symmetry into the present analysis. 

Summary and conclusions 

The techniques of differential geometry have been 
applied to the specific case of grain boundaries of both 
the symmetric and asymmetric types. Quantities such 
as the distortion tensor, lattice connection, curvature 
tensor, Burgers vector and dislocation density tensor 
all have well defined physical meanings with respect 
to such boundaries, and have been analyzed in detail 
in terms of the Burgers circuit. 
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